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The g-state clock model is an excellent platform to study the BKT transitions. With the recently
developed tensor network approaches, studying the g-state clock model becomes possible. In this
paper, we perform different tensor network algorithms on the g-state clock model to study the
critical behaviours, such as the critical points, central charge and scaling dimension. The results are

consistent with previous works.

I. INTRODUCTION

Understanding emergent phenomena in condensed
matter systems lies at the heart of physics, such as phase
transitions and critical phenomena. Two typical types
of phase transitions include the Ginzburg-Landau phase
transition driven by order parameters with symmetry
breaking and the Berezinskii-Kosterlitz-Thouless (BKT)
transitions driven by topological defects [1]. The BKT
transition is usually presented in the XY model, provid-
ing an example for beyond Landau’s symmetry breaking
paradigm. Recently, scientists found that BKT transi-
tions can occur in the discrete XY model, also known as
the g-state clock model or vector Potts model. It’s also
pointed out that this model undergoes an intermediate
state with two critical points when the possible orien-
tations ¢ > 5 [2]. However, accurate determination of
the two critical temperatures for the cases ¢ > 5 also
remains a challenging problem [3, 4]. Since the critical
points are hard to determine, especially with large ¢, by
using usual Monte-Carlo methods [5], other numerical
approaches must be used to study this system.

Recently, tensor network has become a powerful theo-
retical and numerical tool for studying condensed matter
systems [6, 7]. In statistical physics, the partition func-
tion can be expressed in terms of tensor networks, thus
if we can calculate the tensor network, it’s quite simple
to obtain other physical quantities. Hence, the problem
is reduced to the contraction of multidimensional ten-
sor network, and many algorithms have been proposed
to implement tensor contraction approximations [8, 9].
However, when applying tensor network methods to the
g-state clock model especially for large ¢, high accuracy
tensor network algorithms are badly needed, since this
model is strongly entangled in short-range, which is irrel-
evant when studying critical properties. Moreover, trun-
cation error must be reduced in order to accurately de-
termine the critical points.

In this paper, we perform the tensor network algo-
rithms on the g-state clock model to study the critical
behaviours, such as the critical point, scaling dimension
and central charge. We use different tensor network algo-
rithms (LN-TNR, TEFR, EV-TNR and Loop-TNR) to
study the model and compare the results.

II. Q-STATE CLOCK MODEL

A. Partition Function and Transfer Matrix

The Hamiltonian of the g-state clock model is given by

HZ—JZCOS(Hi—Hj) (1)
(ig)

where §; = 2mi/q, and ¢ € {1,2,--- ,q}. Let 6;; = 6, —0;,
we have the partition function

Z = Zexp BJZQij (2)

{6} (i)

For ¢ = 2, the model is reduced to the Ising model. In
the limit ¢ — 0o, the g-state clock model is equivalent to
the XY model. We note that, the partition function can
be rewritten into the form of tensor:

Z =tTr®T (3)

Consider 2-dimension square lattice, we can construct
the tensor from the interaction between four adjacent
spins (seen in Fig. 1). Thus the 4-rank tensor Tz

T;jk = exp BJ (cos 6§ + cos bk + cos Ol + cos 6;i) (4)

where 4,7, k,l € {1,2,---,q}. And tensor T can be cal-
culated by summing over the whole tensor network. In
this way, we have the partition function

Z =tTr@T = Z TjeiThgikTypirTiits -+ ()
ijkl....

B. Tensor Network Renormalization

Calculating the tTr is a hard problem in high dimen-
sions, because there are so many tensors in the net-
work.A simple idea to accelerates this calculation is il-
lustrated in Fig. 2. According to the approximate
method first introduced by Levin and Nave[11], we find
a “bigger” tensor T’ to replace the original “smaller”
tensors. As a result, we can then express the trace as



FIG. 1: Tensor network representation of g-state clock
model on square lattice[10]

tIr[T @T...] = tTr[T" @ T"...],where we only need
to deal with less tensors contained in the new network.
The cost of reducing tensors is that each has a higher
dimension, but it’s difficult to store and call the huge
tensors in the high-order iterations if we don’t take any
approximation. In the TRG algorithm, we use the low-
rank approximation to reduce the dimension of the new
tensor to the desired value.
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FIG. 2: Renormalization procedure of tensor
network|[12]
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FIG. 3: Implementation on 2D square lattice[12]

The actual implement of the TRG algorithm on a 2d
square lattice is a little more complicated.As shown in
FIG.3, to construct a new tensor 17, We divide the lattice

into a purple sublattice and a green sublattice. By means
of singular value decomposition, we can decompose the
tensor on purple sublattice into two third-order tensors.

That is, Tpuig = S22 S1utsSsars. And likewise for the

green sublattice, we have T, q = 2521 S91dsSarus. We
haven’t used an approximation here, r,u,l,d all have D
values and s has D? values.

It is easy to find that after accurate decomposition, the
tensor network becomes the form shown in 3??b) and a
new fourth order tensor formed from four third order
tensors(S) can be regarded as the new tensor 7" with a
dimension of D?. The dimension of 7" is determined by
the form of S. If we choose to keep only the largest first
D,y eigen values in SVD, which we think can approx-
imately Keep the trace before and after decomposition
unchanged. Then we can make s runs over D.,; values,
which is to say, the dimension of T” is D ;.

Through the procedure we mentioned above, we can
get Tt from T which is an iteration step of TRG al-
gorithm.By repeating the above process, tensor network
renormalization is realized.

C. Critical Properties

We use TRG(LN-TNR) Algorithm to simulate the
transition of the 2-dimension g-state clock model. Usu-
ally, we use the second derivative of the free energy(the
heat capacity) to find the critical point. After renormal-
ization, we can get the partition function Z, and then cal-
culate the free energy F and heat capacity 0?F/9T?(See
in Fig. 4). Obviously the capacity has a peak at the
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FIG. 4: The free energy and its second derivative for
q = 2 model

certain temperature. The temperature of the peak is at
2.26 £ 0.02 close to the theoretical value of 2-dimension
model is 2/ (ln (\/5 + 1)) = 2.269. However, in this arti-
cle we use the gauge invariant quantity x introduced in
Ref. [12]:
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The gauge invariant quantity x has a good character-
istic. It converges to q in ordered phase, and converges
to 1 in disordered phase. To help understand this, we
take ¢ = 2 as an example. For Ising model, the tensor is
given by

TIsing _ 6—4,@ TIsing _ 6—4[3
1212 v do121 )

Ising __ 48 Ising __ 48
Ty =€, Toype” = €77, (7)

others = 1.

We performed TRG described in IIB. After several it-
erations, the tensor converges to a fixed-point tensor. For
high temperature, the fixed-point tensor has the form:

T1111 = 1, others = 0. (8)
TTRI

We call tensor like this the trivial tensor . For low
temperature, the fixed-point tensor has the form:

T1111 = 1, T2222 = l,others = O (9)

We can rewrite the tensor in the form 7% = TTRI g
TTRI This symmetry is because in the ordered phase,
it is the same for spins all up and spins all down. And
T?2 happens to be equivalent as the initial tensor in the
zero-temperature limit(5 = co). Thus we can regard the
flow of the tensor network as the flow of the temperature
B — oo. In this view, we expect there’s the same result
for high temperature. However, the fixed-point tensor
has a form:

~ 1

L — o nhd=1,2 (10)
which is not the same as TT™R! in Eq. 8. However, the
two tensor will work out the same tensor trace because
of the similarity between them,

T,,/,/u/l/d/ - (Ail) (Bil)u/u TT‘uldATT/de/ (11)

]
where A and B are orthogonal matrices. And it is easy
to check that A= B =R

Y

To sum up, the gauge invariant quantity y is a good value
to evaluate the phase transition.

After 20 iterations of LN-TNR with D.,; = 24, we get
how y varies with temperature for ¢ = 2, 3, 4(See in Fig.5,
6, 7). We can see for ¢ = 2,3, the simulation critical
temperature is intrinsically close to the theoretical value.
For ¢ = 4, the simulation critical temperature is a little
bigger than the theoretical value, which means the LN-
TNR algorithm can be so accurate.

The error still remains for ¢ = 5 model. There are
two critical points for ¢ = 5 model. After adjusting the
D¢+ and iteration number, we correctly get the middle
phase for ¢ = 5(See in Fig. 8). However, the position
of the critical point cannot be exactly decided. Thus
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FIG. 5: The invariant quantity x as a function of
temperature for ¢ = 2 model. The vertical line is the

theoretical value of the critical temperature
2/ (In (vV2+41)) ~ 2.2692
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FIG. 6: The invariant quantity x as a function of
temperature for ¢ = 3 model. The vertical line is the

theoretical value of the critical temperature
3/(2In (V3+1)) ~ 1.4925
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FIG. 7: The invariant quantity x as a function of
temperature for ¢ = 4 model. The vertical line is the

theoretical value of the critical temperature
2/ (In(vV2+1)) ~ 1.1345



we studied x as a function of iterations for ¢6. Collect
X during 40 iterations with Dg,; = 42(See in Fig. 9).
First, the invariant quantity converged to a stable num-
ber about 4.7, which meant this temperature should. As
the iteration times increased, x jumped out of the middle
phase into the ordered phase. When iteration times was
higher than 30, x jumped into another unknown state.
The jump of x between states happened because of the
truncation error in the SVD decomposition. And the un-
known state may predicted some unexpected fixed-point
tensor. Thus we need some more precise and optimised
algorithm to reduce the unexpected fixed-point and min-
imize the truncation error. We will talk about them in
I11.

a6 ¢t : { v size ot
‘e size: 211
. : :
449 . M : Poe  sizer21?
. :
Poe  sizer21?
427 o size: 214
204 4 o size: 218
3.8 4 : '
3.6 : ]
3.4 4 ‘ i

32 i

T T T T T T T T
0.89 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97
Temperature

FIG. 8: The invariant quantity x as a function of
temperature for ¢ = 5 model
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FIG. 9: The invariant quantity x as a function of
iteration times for ¢ = 6 model

The principle of conformal invariance is strong at criti-
cal point,a single dimensionless number ¢ (central charge
of the virasoro algebra) can characterize the universal-
ity classes. According to conformal field theory, we can
calculate the central charge and scaling dimensions from

following formula(see Ref.[12]):

[tT’I‘(T? )N7] — Z e—27r[6—c/12]1m(-r‘) (13)

inv
n=0

Among themT}. = is the fixed point tensor,tau is a com-
plex number describes the lattice shape change during
rescaling,  and ¢ are scaling dimensions and central
charge.

As for ¢ = 2,The theory gives the central charge and
the lowest nonzero scaling dimension(at critical point) as
0.5 and 0.125.The results of our calculations with TRG
algorithm is shown in FIG.10.We can see that our calcu-
lation results are close to the theoretical result as the iter-
ation steps increase at first.However,if the iteration steps
are too big, the truncation error in approximate SVD op-
eration will cause the results to deviate. This Phenomena
tell us that we need to make appropriate iteration steps
choices to make the best results with TRG.This is the
limitation of TRG.

It is worth noting that, as central charge is only
nonzero when correlation length diverges, plotting cen-
tral charge as a function of temperature is a good way
to discover phase transition. As shown in FIG.11, we
use central charge to determining phase transition point
which Consistent with results using x
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FIG. 10: central charge to determining phase

IIT. IMPROVED TENSOR NETWORK
RENORMALIZATION ALGORITHM

A. TEFR Algorithm

A large class of tensors which can be fixed point of the

SVDTRG flow takes the following form:
Truld(M17 M27 M37 M4) = TT17"2,1L21L1,l2l1,d1d2
=M}, M2 M}dMj,

T2u1 U271

(14)

r1, 7o represents the index r,This corner double-line ten-
sor is called CDL tensor. Network constituted by this
kind of fixed pointed tensor is shown in FIG. 12 We can
see there are lots of disconnected squares in the network,
which means the degrees of freedom form cluster and thus
interaction between clusters are limited. This makes the
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FIG. 11: The central charge and lowest nonzero scaling
dimension at critical point as a function of the iteration
steps

FIG. 12: (a)a CDL tensor.(b)CDL tensors constitute a
network

CDL fixed point describe a trivial phase with out long-
range entanglement.

To overcome this flaw in the TRG algorithm, there is
a improved algorithm called TEFR. As shown in FIG.13,
We can see that it is basically consistent with TRG al-
gorithm, except that the process from (c) to (d) is a new
content. n this step, the iterative process(details see Ref.
[12]) is used to reduce the corresponding degrees of free-
dom (entanglement reduction) on each edge of the small
rectangle(As shown in the FIG. 10, dotted line is changed
to a solid line).

It should be noted that we did not try this algorithm
because it does not solve the most significant truncation
error problem in TRG.

B. EV-TNR Algorithm

Recently Ref. [13] introduced a method to successfully
remove short-range correlations from the partition func-
tion at each coarse-graining step, even in critical systems.
This approach is referred to as Evenbly-Vidal TNR (EV-
TNR).

FIG. 13: The graphical representation of TEFR
algorithm.

The EV-TNR algorithm begins with an entanglement
filtering TNR transformation. The key idea is to insert
two projectors (also called disentanglers) u and u! into
the tensor network, with wu’ = I. The projectors can
reduce short-range correlations and does not change the
partition function. However when the insertion combines
two indices into a single one, as shown in Fig. 14(c), it
will introduce a truncation error § into the tensor network
(Fig. 14(d)). By carefully choosing the projectors, we
can minimize ||¢|| and then resulting tensor network will
be a good approximation.

The graphical representation of TNR transformation is
shown in Fig. 15. In Fig. 15(a), projectors are inserted
into the tensor network. The Fig. 15(b) step is contract-
ing indices to generate B(®) and C®). The Fig. 15(c)
is the singular value decomposition. Details of choosing
projectors can be found in Ref. [14].

Since the short-range correlations are reduced through
the entanglement filtering step, the EV-TNR algorithm
can significantly improve the accuracy in the same D,
as LN-TNR. To demonstrate the advantage of EV-TNR
algorithm, we calculate the scaling dimension of ¢ = 2
clock model (i.e., the Ising model) and compare it to
the result of LN-TNR model, as shown in Fig. 16. For



FIG. 14: The entanglement filtering step.
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FIG. 15: The graphical representation of TNR

transformation.

small system size, the two algorithms give the same re-
sult, while for large system size, the LN-TNR results de-
viate from the theoretical values.
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FIG. 16: Scaling dimension calculated by EV-TNR and
LN-TNR algorithm, respectively.

C. Loop-TNR Algorithm

We spent a lot of time on the Loop-TNR algorithm [15]
but failed. Here we will introduce Loop-TNR algorithm
and discuss about our problems.

The Loop-TNR algorithm contains three main steps.
The first one is a entanglement filtering step. This idea
was first introduced in Ref. [12], and was showed that it
can reduce corner double line (CDL) tensors and generate
a canonical gauge. This step is exact by inserting pro-
jectors between the tensors. See Appendix A for details
of entanglement filtering.

The next step is to optimize the tensors on a loop. To
reduce the bond dimensions when deforming the square
lattice, they defined the following cost function shown
in Fig. 17 which is a quadratic function for parameters
associated with one tensor S;

f = ||T1'T2'T3'T4 — Sl' S2’ Sg' S4' S5' SG‘ S7'SgH2

= [ 1Wa) —¥p) |
= (Wa|W4) + (Up|Vp) — (Va|¥p) — (Up|Va)
= C+SIN;S;, —Wis, —siw,
(15)

which is quite different from the LN-TNR algorithm or

EV-TNR alorithm, where f; = ||T; — S;-Sa||? and f» =
| T2 — S3-S4|?. For each S; the minimum of f(S;) can
be found by solving the following equation

NiSi =W, (16)

and we can optimize S; according to Eq. 16. By sweeping
back and forth we can find a minimum of f. The final
step is the same coarse-graining procedure as LN-TNR
algorithm[11].
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FIG. 17: The cost function [15], corresponds to Eq. 15.

Our problem is mainly with the second step. When
calculating A; and W;, we need to calculate the contrac-
tion of multiple tensors. However this step is high on
memory cost, and is hard to calculate with our personal
computer under the condition of D.,; = 36 as in Ref.
[10]. We used the following contraction procedure but
still cannot significantly reduce the virtual memory cost
when D, is large. We calculate S; - S;41 first, which is
a 4-order tensor, as shown in Fig. 18(a). Then calculate
Si-Si1-S!-Sl, for N; (Fig. 18(b)) and S; - Sy - T
for W; (Fig. 18( ) and Fig. 18(d)). These tensors are 4
or 5-order tensors. Thus the order of tensor contraction
is within 5. Notice that these tensor calculations can be
simply performed on GPU, so our future plan contains
introducing GPU algorithms, like CUDA.

i E (a) I:I(b) I i(C) i(d)

FIG. 18: Rules of tensor contraction when calculating

N; and W,.

This problem can also probably be solved by consider-
ing the Cy rotational symmetry, which reduces the cost
function into

f=|T: Ty T3 Ty — M-M-M- M|? (17)
where M = S; - S;. Thus we can use the conjugate
gradient method introduced in Ref. [16] to minimize the
cost function.

IV. CONCLUSION

In this paper we studied the Tensor Network Renor-
malization algorithm and used it to study the phase tran-
sition of the g-state model. We calculated the free en-
ergy F, heat capacity C' around the critical point for
Ising model. By introducing the gauge invariant quantity
X, we obtained the critical temperature for ¢ = 2,3,4,5
model and explained how this can be done in the flow of

the tensor network and studied about some CFT con-
cepts including central charge and scaling dimension.
From the simulations above, We found that the TRG(LN-
TNR) had a big problem about truncation error and un-
expected fixed-point.

Thus we introduced other improved TNR, algorithm,
TEFR, EV-TNR, and Loop-TNR. On on hand, these al-
gorithm used different ways to reduce the CDL tensor
to avoid meeting unexpected fixed-point. On the other
hand, they used their own way to optimize the cost func-
tion during each TNR-iteration step.

Appendix A: Detail Algorithms of Loop-TNR

In this section we show how_to find the projectors P;g
and P;;. Beginning with Lgl’l] = I, we do such QR de-
composition in each iteration (applying periodic bound-
ary condition on the index j)
=T, L =i

L, (A1)

and LQ decomposition iteration for R[-k’j I e.,
T;- R[k - R[k J+1) ’i‘ After obtaining the converged
value L[OO 1 and R[ ], we can calculate the projectors
as follow (applymg periodic boundary condition on the
index 1)

00,1 — 1
Pi 1r= RI™; 1]Vi—1,i7A
VA1
) , (A2)
-
Aifl,l
where A, U,V are obtained by the singu-
lar ~ value  decomposition Lgoo’l] . Rgo_ol’zf Y

Ui—l,i' \/ A¢_17¢' \/ Ai—l,i' Vg—l,i‘ The schematic of

these iteration steps are shown in Fig. 19.

Ll QR

<d—\<. Y\ P VAL VAR ¥ _\)’—\L
1 T1 Ty T3 T4 Tl T Tx Ty SVD T,
Ll QR LQ  plid Ry
<_\ ! \ NN s I‘D—D—ﬂ—’ M
T, T» T3 T4 T, T T3 7, [ )
Rl Uan V4
\( 3 5 \ \ Y Moo
[ty P »
Tz T1 Ty T T2 T/ (@ R
N N fial QR LO\ RP! X Vir L
va g ( = Y Y _\{_D_y_f_\_n_\(_
Ty T4 T1 Ty . )
i L
VA VAR VARV S M G VL VI VA _\,f_b_q_\g

FIG. 19: Entanglement filtering step.

Appendix B: Personal Contribution

1. Jun-Han Huang (19307110193) wrote the code
of LN-TNR and Loop-TNR algorithms, analyzed
and explained the data and results.



2. Zai-Zhou Xin (19307110240) studied the LN-
TNR, GW-TNR and Loop-TNR algorithm, coded
the TRG(LN-TNR) program and TEFR(GW-
TNR) program and applied online EV-TNR code
to compare the optimization between different al-

gorithm.

3. Jia-Hao Liu (19307110255) studied the LN-
TNR, GW-TNR and Loop-TNR algorithm, partic-
ipated in discussions and analyze data, code calcu-
lation of central charge and scaling dimensions
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